
Hosted by Tikal.

 w w w . t i k a l k . c o m

 Cost-Benefit Open Source

Israel JBoss User Group
Session 08 / 16.4.2008

JBoss 5:
IoC for the Deployables

 By : Zvika Markfeld, Tikal Knowledge

Hosted by Tikal www.tikalk.com

Agenda

 Introduction
 New Features
 JBoss Microcontainer
 JBoss and OSGi
 Business Analysis

Hosted by Tikal www.tikalk.com

Introduction

 What's happening in the JEE world recently
 POJO, POJO, POJO
 Spring, Hibernate, JSF, Web Beans, OSGi
 Server-side changing...

 JBoss want to win back the runtime stack

Hosted by Tikal www.tikalk.com

JBoss 5 New Features

 Microcontainer

 JBoss AOP
 Virtual Deployment Framework

 Unified Invokers

 Classloading

 Messaging
 Transactions

 Clustering

 JSF1.2(CDDL)

 Web Stack

Hosted by Tikal www.tikalk.com

JBoss MC

 JBoss Microcontainer 2.0: The new kernel
» Refactoring of the JMX Microkernel

 Supports direct POJO deployment and standalone
use outside the JBoss application server

 Bootstrapped by Profile service
 Responsible for managing the POJOs now binding

services together
 Running on top of IoC container:
» JMXKernel & MainDeployer, rebranded as POJO

 jboss-service.xml -> jboss-beans.xml
 conf/jboss-service.xml -> conf/bootstrap-beans.xml

Hosted by Tikal www.tikalk.com

JBoss MC

 Emphasizes the concept of a state machine
 It manages fine grained state transition for beans
 Bean States: Not Installed, Described, Instantiated,

Configured, Create, Start, Installed and Error

 Will support hot-redeployment of any bean
 Not a general purpose IoC container!
» Missing many useful features found in Spring/Pico/Nuts

¥ Auto-wiring, inner bean/local bean, prototype bean,
module, abstract bean, ad-hoc bean combination

 Provides a set of APIs that can be used directly to
manage beans without having to use xml.

Hosted by Tikal www.tikalk.com

JBoss MC
 Lightweight, Unit Testable, Mavenized
 POJO based, Service Oriented
 Inerface/Class-based

 ÒA Java Bean is a reusable software component that can
be manipulated visually in a builder tool.Ó

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns:xsi=" http://www.w3.org/2001/XMLSchema-instance "

 xsi:schemaLocation="urn:jboss:bean-deployer:2.0 bean-deployer_2_0.xsd"

 xmlns="urn:jboss:bean-deployer:2.0">

 <bean name="HRService" class="org.jboss.example.service.HRManager">

 <property name="salaryStrategy"><inject bean="AgeBasedSalary"/></property>

 <property name="hiringFreeze">false</property>

 </bean>

...

</deployment>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

Hosted by Tikal www.tikalk.com

JBoss MC

 PropertyEditor Support
 No prototypes
» Òtrivial logic which is very unlikely to breakÓ

 Service Jar:
» META-INF/jboss-beans.xml:

service descriptor
» META-INF/maven/.../pom.xml:

generated by Maven, used for dependency resolution
» class files & resources

Hosted by Tikal www.tikalk.com

Demo

 Coding humanResourcesService

 Running the client

 Observing client bootstrap

Hosted by Tikal www.tikalk.com

Microcontainer Architecture

 Services are POJOs, behavior is added through AOP
 Effectively reproducing all JMX microkernel features
 Improved DI and classloading
 Composed of:

 Kernel:
Provides the bus and registry, and an event manager

 Container:
Wrapper for POJOs, AOP jointpoints and reflection on the
actual service implementation POJO

 Dependency:
Basically an abstract state machine that manages service
dependencies.

 Some optional packages on top of the core: OSGI
integration, Guice integration.

Hosted by Tikal www.tikalk.com

JBoss MC Client Invocation Styles

 Direct, typed, cached

 bootstrap = new EmbeddedBootstrap();

 bootstrap.run();

 bootstrap.deploy(url);

 kernel = bootstrap.getKernel();

 controller = kernel.getController()

context = controller.getInstalledContext(HRSERVICE);

 manager = (HRManager) context.getTarget();

 manager.addEmployee(newEmployee);

Hosted by Tikal www.tikalk.com

JBoss MC Client Invocation Styles

 JMX-style, untyped, dynamic

 bootstrap = new EmbeddedBootstrap();

 bootstrap.run();

 bootstrap.deploy(url);

 kernel = bootstrap.getKernel();

 bus = kernel.getBus();

 bus.invoke(

 "HRService",

 "addEmployee",

 new Object[] {emp},

 new String[] {“org.jboss.example.service.Employee”});

Hosted by Tikal www.tikalk.com

Demo

 Client invocation styles

Hosted by Tikal www.tikalk.com

Classloading Customization
 What if a service should be loaded from a jar not

included in the launcher classpath?

 <bean name="URL" class="java.net.URL">
 <constructor>

 <parameter>file:/Users/zvika/.../service.jar</parameter>

 </constructor>

 </bean>

 <bean name="customCL" class="java.net.URLClassLoader">

 <constructor> ...

 <inject bean="URL"/>

 ... </constructor>

 </bean>

 <bean name="HRService" class="org.jboss.example.service.HRManager">

 <classloader><inject bean="customCL"/></classloader>

 </bean>

Hosted by Tikal www.tikalk.com

Demo

 Custom classloading service jar

Hosted by Tikal www.tikalk.com

JBoss AOP 2.0

 Integrated with the microcontainer
 Custom syntax & implementation, using javassist

 Wheels are not meant to be shared!
 Add behavior to a POJO using AOP

 POJOs won't be deployed before the aspect is available
 Aspects are not deployed if the POJOs they depend on

are not deployed
 Aspects can be bound to POJO lifecycle

 e.g an aspect that binds a proxy into JNDI when the POJO
enters the deployed state.

 It also has some new plain AOP features: Before,
After, Throwing, Finally flows for interception.

Hosted by Tikal www.tikalk.com

Demo

 Adding a simple Aspect

Hosted by Tikal www.tikalk.com

JBoss MC - Lifecycle Callbacks

 NOT_INSTALLED - deployment descriptor parsed
 DESCRIBED - aop dependencies added to the bean
 INSTANTIATED - an instance has been created
 CONFIGURED - properties have been injected
 CREATE - the create method, if defined, was called
 START - the start method, if defined, was called
 INSTALLED - custom install actions executed, bean

is ready to access

Hosted by Tikal www.tikalk.com

JBoss MC - Lifecycle Callbacks

<aop:lifecycle-install

 xmlns:aop="urn:jboss:aop-beans:1.0"

 name="InstallAdvice"

 class="org.jboss.test.microcontainer.support.LifecycleCallback"

 classes="@org.jboss.test.microcontainer.support.Install">

</aop:lifecycle-install>

 Read:
LifecycleCallback should be applied to any beans
annotated with @Install before and after the
INSTALLED state

Hosted by Tikal www.tikalk.com

JBoss MC - Additional Features

 Annotation Support
 Spring <beans> Support
 Other xml / custom formats
 Factories
 Bean Aliases
 more...

Hosted by Tikal www.tikalk.com

Profile Service

 Management system for POJOs
 Replaces the JMX based administration
 Centralized maintenance as profiles, e.g. all,

minimal, default, ...
 Persistence of changes made to a profile across

server restarts
 Propagation of profile changes across a cluster
 Profile Versioning
 Loaded from bootstrap-beans.xml

Hosted by Tikal www.tikalk.com

JBoss and OSGi

 Goal #1: OSGi based classloader
 First for JBoss runtime, later for application developers

via OEEG(OSGi Enterprise Expert Group)

 Restricting class visibility
 Better control over the exposure of implementation

details
 Integrate OSGi Bundle Repository (OBR)
 Fits nicely with ProfileService, VFS

 Goal #2: Full OSGi core spec v4.1 implementation
 With added features: AOP, JMX support, fine grain DI,

scoped metadata, generic deployers
 Current State: Work In Progress

Hosted by Tikal www.tikalk.com

Business Analysis

Tale Of 3 Frogs...

Hosted by Tikal www.tikalk.com

Business Analysis

 So runtime stack is important after all...
» Will the effort pay off? Will JBoss replace Spring?

 What happened to (the wonderful friendship with)
Guice?
» Not much

 What does JBoss 5 prove?
» IoC paradigm still has a way ahead...

 Pitchfork: Eat their dust!
» or not?

Hosted by Tikal www.tikalk.com

Q & A

Hosted by Tikal www.tikalk.com

Thank You!

